Truck Aerodynamics

Relevance to the Automotive Industry:
With the increased demand for "greener" / low emission vehicles as well as the need for higher efficiency in order to reduce our nation's dependence on foreign oil it is imperative to develop new energy efficient vehicles. In particular tracks that support the backbone of the nation's commercial transportation suffer by tremendous drag that results in fuel demands on the order of over 10% of total oil demand in the US. This project will develop flow control methods to manage the wake of the track and improve its aerodynamics in order to substantially reduce the drag.

Research Location:
| TUD | VT Advanced Experimental Thermofluids Engineering Research (AETHER) Laboratory |

Homepage (Engl.):
http://www.me.vt.edu/AETHER/

Faculty Mentor:
Prof. Pavlos Vlachos, Ph.D.

Faculty Mentor Email:
pvlachos@vt.edu

Graduate Mentor:
Sam Raben, MS

Graduate Mentor Email:
sraben@vt.edu

Project Description:
This project will use global and planar flow field measurements in water and wind tunnel facilities to quantify the flow field around generic track geometries and with direct force (drag) measurements and pressure distributions determine how different active and reactive control approaches reduce the drag.

Necessary Skills/Knowledge:
- Working/basic knowledge of Matlab, CAD, introductory fluids courses

Desirable Skills/Knowledge:
- LabView, Tecplot, introductory optics

Additional Online Resource:
NSF REU Students must have completed at least two semesters of engineering studies prior to the proposed summer research, and they must have at least one semester remaining before they can earn their BS in Engineering.