Relevance to the	Object detection for automated driving typically depends on object classification
Relevance to the Automotive Industry:	However, current classes are arbitrary and without any clear connection to safety
	requirements that conforming with traffic laws. Safety assurance requires
	transparent requirements for classification, which will be developed in this project.
Research Location:	Technische Universität Darmstadt
	Institute for Automotive Engineering (FZD)
Homepage (Engl.):	http://www.fzd.tu-darmstadt.de
Faculty Mentor:	Prof. DrIng. Steven Peters
Faculty Mentor Email:	steven.peters@tu-darmstadt.de
Graduate Mentors:	Ken Mori, M.Sc.
Graduate Mentor	ken.mori@tu-darmstadt.de
Emails:	
Drainat Department	The Technische Universität Darmstadt Institute for Automotive Engineering (FZD
Project Description:	is participating in the VIVID project that attempts to develop perception
	requirements. This NSF REU project will be concerned with the classification o
May 30 - Aug 06, 2022	objects in driving context. The objective for the NSF REU student is to develop a
	hierarchical classification structure based on semantic or kinematic object attributes. This includes consideration of legal texts governing traffic behavior. The
(10 weeks, 40 h/week)	successful outcome will be a hierarchical classification structure that is well
	grounded in existing legal and semantic requirements and that can serve to
	evaluate object classification.
	PHASE A (2 weeks): During this introduction phase, the NSF REU student will
	review relevant research; investigate existing datasets, classifications, semantic
	structures, natural language processing, and legal texts, as well as detail and
	distribute project responsibilities for the remainder of this NSF REU project.
	PHASE B (3 weeks): Next, the student will develop one or more classification
	hierarchies considering the aforementioned aspects and document this work
	Different variants may emphasize different aspects such as dynamic behavior
	required action or semantic meaning.
	PHASE C (3 weeks): Then, the student will evaluate the hierarchies with respec
	to continuity with previous work and compliance with legal requirements
	Evaluation criteria will be developed that allow the selection of one classification
	hierarchy. The effort of maintaining and updating the hierarchy, future labeling
	effort and possibilities of automated generation and updating will be evaluated and discussed.
	PHASE D (2 weeks): Finally, the NSF REU student will document the research
	performed, prepare a written report, and deliver an end-of-summer presentation or the research performed.
Target publications:	IEEE ITSC 2023: 26th IEEE International Conference on Intelligent Transportation Systems
Necessary Skills/	
Knowledge:	
Desirable Skills/	Experience with Python, Object classification and detection
Knowledge:	
Additional Online	
Resource(s):	

NSF REU Students must have completed at least two semesters of engineering studies prior to the proposed summer research, and they must have at least one semester remaining before they can earn their BS in Engineering.